Tarek M. Abou Elmaaty

Department of Textile Printing, Dyeing & Finishing, Faculty of Applied Arts, Mansoura University-Damietta branch, Egypt

e-mail: tasaid@mans.edu.eg Received February 3, 2008

$$\begin{array}{c} NO_2 \\ NO_3 \\ NO_4 \\ NO_2 \\ NO_4 \\ NO_5 \\ NO_4 \\ NO_5 \\ NO$$

5-Methyl-4-nitro-2,1,3-benzoselenadiazole (1) was converted into (E)-5-(2-dimethylamino)vinylbenzo-[c](1,2,5)selenadiazole-4-amine (4) by initial treatment with dimethylformamide dimethyl acetal (DMFDMA) (2) followed by selective reduction using ammonium bromide in methanol. Compound 4 afforded the selenadiazolo[3,4-i][1]benzazepine derivatives (7, 10, 13, 15) upon treatment with malononitrile (5), ethyl cyanoacetate (8) and cyanoacetamide (11) respectively.

J. Heterocyclic Chem., 45, 1179 (2008).

INTRODUCTION

In continuation of our interest in synthesizing new seven membered rings, with anticipated biological importance using nitriles [1] as a simple and cheap staring materials, this work describes the syntheses of selenadiazolobenzazepine derivatives starting from simple nitriles.

Azepine derivatives are weak modulators of ligand response in $G\alpha$ -protein coupled α_{2A} adrenoceptors [2], also, in adrenoceptor identification [3], potent integrin receptor antagonist [4], allosteric modulators of musacrinic receptors [5], a new GABA uptake inhibitors [6].

This paper communicates the first preparation of selenadiazolobenzazepine derivatives with an illustration of their synthetic use en route to nitrogen heterocycles.

RESULTS AND DISCUSSION

Scheme I outlines the synthetic sequence employed in our laboratory for preparation of the key intermediate (E)-5-(2-dimethylamino)vinylbenzo[c][1,2,5]selenadiazole-4-amine (4).

The strategy for the synthesis of **4** was based on the condensation of 5-methyl-4-nitro-2,1,3-benzoselena-diazole (**1**) [7] with N,N-dimethylformamide dimethyl acetal (DMFDMA) (**2**) in DMF to give the *trans* isomer (J = 13.1 Hz) of enamine **3** [8] in 84% yield. The reduction of the nitro enamine **3** using ammonium bromide in methanol [9] under neutral conditions leads to the selective reduction of the nitro group leaving the double bond of the enamine intact. The reduction completion was monitored by TLC which gave a single

spot after 10 hours. This approach leads to (E)-5-(2-methylamino)-vinylbenzo[c](1,2,5)selenadiazole-4-amine (4) in a good yield.

Treatment of **4** with active methylene compounds **5**, **8** and **11** in refluxing ethanol containing a catalytic amount of piperidine resulted in the formation of the unknown 1,2,5-selenadiazolo[3,4-*i*][1]benzazepine derivatives **7**, **10**, **13**, and **15** respectively (Scheme II). The formation of the selenadiazolo[3,4-*i*][1]benzazepine structure **7** was elucidated based on correct elemental analysis and spectral data. Thus ¹H-nmr spectrum of **7** shows the presence of two doublets at 6.33 and 7.7 ppm for H-6 and H-7 splitting each other, which is characteristic of the azepine structure.

Structure **10** was assigned for the product obtained by reaction of **4** with ethyl cyanoacetate (**8**) based on correct spectral data. 1 H-nmr revealed the presence of doublet-doublet signal for H-6 and doublet-triplet signal for H-7. Also, 13 C-nmr exhibits a signal at δ =168 ppm corresponding to amidic carbonyl function.

Two possible structures have been proposed for the reaction of **4** with cyanoacetamide. Structure **13** was eliminated based on correct elemental analysis and spectral data. IR spectrum shows the presence of absorption band at 1690 cm⁻¹ which indicates the presence of amidic carbonyl function. Also, 13 C-nmr reveals the presence of a carbonyl signal at $\delta = 179$ which is characteristic to structure **15**.

In conclusion, reaction of active methylene compounds with the (E)-5-(2-dimethylamino)vinylbenzo[c][1,2,5]-selenadiazole-4-amine (4) have been successfully applied. Since the azepine unit has important biological activity, we believe that access to selenadiazolobenzazepine

derivatives will find many applications for biological screening purposes.

EXPERIMENTAL

All melting points are uncorrected. IR spectra were recorded in KBr disks using a Shimadzu IR-740 spectrophotometer. $^1\mathrm{H-}$ and $^{13}\mathrm{C\text{-}NMR}$ spectra were recorded on a Bruker AC-300 spectrometer with $[^2\mathrm{H}_6]\mathrm{DMSO}$ as solvent and TMS as internal standard; chemical shifts are reported in δ units (ppm). Mass spectra were measured on GCLMS INCOS XL Finnigan MAT. Microanalysis was performed on LECOCHNS-932.

5-Methyl-4-nitro-2,1,3-benzoselenadiazole (1). Prepared as in lit. [7] m.p.: 196-8 °C. ir (KBr): 3084, 1617, 1527, 1504,

1493, 1381 cm⁻¹. ¹H nmr (DMSO-d₆): δ 7.98 (d, 1H, J = 9.2, 7-H), 7.60 (d, 1H, J = 9.2, 6-H), 2.44 (s, 3H, Me). ¹³C nmr (DMSO-d₆): δ 158.25, 150.63, 141.69, 131.92, 131.61, 125.46 (vinyle carbons), 16.99 (CH₃).

(*E*)-5-[2-(Dimethylamino)ethenyl-4-nitro-2,1,3-benzoselenadiazole (3). Prepared as in lit. [8] m.p. 186-7 °C, ir (KBr): 2919, 2802, 1620, 1599, 1484 cm $^{-1}$; 1 H nmr (DMSO-d₆): δ 7.99 (d, 1H, J = 9.8, 7H), 7.92 (d, 1H, J = 13.1, 2'H), 7.68 (dd, J = 9.85, 0.5, 6-H), 5.41 (d, 1H, J = 13.1, 1'-H), 3.01 (s, 6H, N-Me).

(E)-5-[2-Dimethylamino)vinylbenzo[c][1,2,5]selenadiazolo-4-amine (4). A mixture of 3 (0.29g, 1mmol), and 30 mmol of tin metal (cut into small pieces) and ammonium bromide (20 mmol) in methanol (10 ml) were placed in a two necked 50 ml rbm and was stirred at atmospheric pressure and room temperature for 10 hours (TLC: petrol/EtOAc 1:1). After completion, the reaction was

quenched by adding little water and organic compound was extracted into diethyl ether (2 x 25 ml). The combined ether extract was washed with dil. HCl and neutralized with NaHCO₃ and was taken into ether. The ether part was dried and the solvent evaporated to get the pure product. The resulting solid was crystallized from isopropanol to give compound 4 as brown crystals, yield 64 %; m.p. 230 °C; ir (KBr): 3250 (NH₂), 1620, 1599 (C=N) cm⁻¹. ¹H nmr (DMSO-d₆): δ 7.98 (1H, d, J = 9.2, 7-H), 7.92 (1H, d, J = 13.1), 7.6 (1H, d, J = 9.2, 6 H), 5.41 (1H, d, J = 13.1), 4.8 (s, 2H, NH₂), 3.01 (6 H, s, N-Me). MS: m/z 264 (M⁺) 100%. *Anal*. Calcd. For C₁₀H₁₂N₄Se: C, 44.95; H, 4.53; N, 20.97. Found: C, 44.81; H, 4.50; N, 21.10.

General procedure for the preparation of compounds 7, 10, 15, 18. To a solution of compound 4 (10 mmol) in ethanol (30 mL) containing piperidine (0.5 mL), was added (10 mmol) methylene compounds 5, 8, 11 or benzylidinemalononitrile (16) respectively. The reaction mixture was then heated under reflux for 6 hours. The reaction mixture was left to cool at room temperature and the deposited solid was collected by filtration to give compounds 7, 10, 15 and 18 respectively.

9-Amino-10H-1,2,5-selenadiazolo[3,4-*i*][1]Benzazepine-8-carbonitrile (7). Compound 7 was obtained as yellow crystals from ethanol; yield 75%; m.p. 245°C; ir (KBr): 3350, 3250 (NH, NH₂), 2190 (CN), 1620, 1599 (C=N) cm⁻¹. ¹H nmr (DMSO-d₆): δ 9.6 (br s, 1H, NH), 8.35 (d, J = 8.8 Hz, 1H), 8.1 (d, J = 8.8, 1H), 7.7 (d, J = 7.9 Hz, 1H), 6.33 (d, 1H, J = 7.9, 1H), 4.85 (br s, 2H, NH₂). ¹³C nmr (DMSO-d₆): δ 164.2, 160.5 (imin-carbons), 161.9, 135.8, 133.0, 129.8, 121.2, 120.3, 120, 61.7 (vinyl- carbons), 115.7 (CN). MS: m/z 288 (M⁺) 100%. *Anal.* Calcd. For C₁₁H₇N₅Se: C, 45.85; H, 2.45; N, 24.30. Found: C, 45.66; H, 2.50; N, 24.23.

9-Oxo-9,10-dihydro-8*H***-1,2,5-selenadiazolo**[3,4-*i*][1]benz-azepine-8*H*-carbonitrile (10). Compound 10 was obtained as yellow crystals from ethanol; yield 70%; m.p. 233°C; ir (KBr): 3350 (NH), 2190 (CN), 1690 (C=O), 1620, 1599 (C=N) cm⁻¹. 1 H nmr (DMSO-d₆): δ 10.5 (br s, 1H, NH), 8.55 (d, J = 8.8 Hz, 1H), 8.1 (d, J = 8.8, 1H) 7.70 (d, J = 8.8 Hz, 1H), 6.33 (d, 1H, J = 5.1, 1H), 5.77 (1H, dd, J = 2.6 and 9.9, 7-H), 4.46 (1H, dt, J =

1.8 and 9.9, 6H). 13 C nmr (DMSO-d₆): δ 168.0 (CO-amide), 164.0, 160.8 (imine-carbons), 133.6, 123.0, 125.0, 120.0, 119.0, 118.0 (vinyl-carbons), 115.0 (CN), 34.0 (CH-aliphatic). MS: m/z 289 (M⁺) 100%. *Anal.* Calcd. For C₁₁H₆N₄OSe: C, 45.69; H, 2.09; N, 19.38. Found: C, 45.66; H, 2.00; N, 19.43.

9-Amino-1,2,5-selenadiazolo[3,4-*i*][1]**Benzazepine-8-carboxamide** (**15**). Compound **15** was obtained as yellow crystals form Ethanol/DMF; yield 77%; m.p. 254°C; ir (KBr): 3380, 3300 (NH, NH₂), 1690 (CO-amide), 1590 (C=N) cm⁻¹. ¹H nmr (DMSO-d₆): δ 9.8 (br s, 1H, NH), 8.35 (d, J = 8.8 Hz, 1H), 8.1 (d, J = 8.8, 1H), 7.51 (d, J = 7.9 Hz, 1H), 6.33 (d, 1H, J = 7.9, 1H), 4.88 (br s, 2H, NH₂). ¹³C nmr (DMSO-d₆): δ 172.0 (CO-amide), 164.8, 160.00 (imine-carbons), 153.00, 136.00, 136.00, 122.0, 121.50, 121.00 120.00, 87.00 (vinyle- carbons). MS: m/z 307 (M⁺) 100%. *Anal.* Calcd. For C₁₁H₉N₅OSe: C, 43.15; H, 2.96; N, 22.87. Found: C, 43.46; H, 2.91; N, 22.63.

REFERENCES AND NOTES

- [1] Abou Elmaaty, T. Synth. Comm., 2006, 36, 2281.
- [2] Pauwels, P. J. S.; Tardif, F. C.; Colpaert, T. Wurch, Biochem. Pharmacol. 2001, 61, 1079.
- [3] Willems E. W.; Valdivia, L. F.; Juan, E. R-S.; Saxena P. R.; Villalon, S. M. *Life Sci.* **2001**, *69*, 143.
- [4] Meissner, R. S.; Xu, W. (Merck & Co., Inc., USA). PCT *Int. Appl.*, 136:309803. CAN, **2002**, 27pp.
- [5] Trankle R. Li.; Mohr, C., Holzgrabe, K. A. Arch. Pharm. Med. Chem., 2001, 334, 121.
- [6] Andersen, K. E.; Sorensen, J. L.; Lau, J.; Lundt, B. F.; Petersen, H.; Husfeldt, P. O.; Suzdak, P. D.; Swedberg, M. D. B. J. Med. Chem. 2001, 44, 2152.
- [7] (a) Sawicki, E.; Carr, A. J. Org. Chem., 1958, 23, 610. (b)
 Pesin, V.; Muravnik, R. S. Latvijas PSR Zinatnu Akad. Vistis. Ser., 1964,
 725 (CA 63:4279). (c) Bird, C. W.; Cheeseman, G. W. H. Tetrahedron,
 1964, 20, 1701.
 - [8] Edin, M. and Grivas, S. Arcivoc, **2000**, 1, 1-5.
- [9] Pasha, M.and Puttaramegowda, J. J. Saudi. Chem. Soc., 2005.9, 665.